ludwig text-classification training

0𝕏koji
1 min readFeb 22, 2019

--

install

$ pip install ludwig
$ python -m spacy download en

Tested text-classification

$ mkdir text-classification
$ cd text-classification
$ wget http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW2/reuters-allcats-6.zip
$ unzip reuters-allcats-6.zip
$ vim model_definition.yaml

model_definition.yam

input_features:
-
name: text
type: text
encoder: parallel_cnn
level: word
output_features:
-
name: class
type: category

train.sh

#!/bin/sh

ludwig experiment \
--data_csv reuters-allcats.csv \
--model_definition_file model_definition.yaml

Visualize

$ ludwig visualize --visualization learning_curves --training_statistics ./results/experiment_run_0/training_statistics.json_         _        _      
| |_ _ __| |_ __ _(_)__ _
| | || / _` \ V V / / _` |
|_|\_,_\__,_|\_/\_/|_\__, |
|___/
ludwig v0.1.0 - Experiment

--

--

0𝕏koji
0𝕏koji

Written by 0𝕏koji

software engineer works for a Biotechnology Research startup in Brooklyn. #CreativeCoding #Art #IoT #MachineLearning #python #typescript #javascript #reactjs

No responses yet