install
$ pip install ludwig
$ python -m spacy download en
Tested text-classification
$ mkdir text-classification
$ cd text-classification
$ wget http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW2/reuters-allcats-6.zip
$ unzip reuters-allcats-6.zip
$ vim model_definition.yaml
model_definition.yam
input_features:
-
name: text
type: text
encoder: parallel_cnn
level: wordoutput_features:
-
name: class
type: category
train.sh
#!/bin/sh
ludwig experiment \
--data_csv reuters-allcats.csv \
--model_definition_file model_definition.yaml
Visualize
$ ludwig visualize --visualization learning_curves --training_statistics ./results/experiment_run_0/training_statistics.json_ _ _
| |_ _ __| |_ __ _(_)__ _
| | || / _` \ V V / / _` |
|_|\_,_\__,_|\_/\_/|_\__, |
|___/
ludwig v0.1.0 - Experiment